一體化村鎮污水處理設備
處理污水、采購污水處理設備,一站式服務廠家:濰坊魯盛水處理設備有限公司。
廠家專車送貨、本地有我們安裝、售后人員,服務更放心。
處理生活污水、化糞池污水、醫療污水、各種洗滌污水、各種屠宰污水、噴漆廢水、各種養殖污水、食品污水、各種生產污水等。
設計與工藝控制
1設計和運行控制要點
1)污泥熱干化程度的選擇應遵循下列原則:利用干化工藝自身的技術特點;整個干化通過污泥與熱媒之間的傳熱作用和后續處置系統投資和運行成本應zui低;考慮污泥形態(松散度和粒度)對污泥輸送、給料系統和后續處置設備的適應性。
2)按照干化熱源的成本,從低到高依次如下:①煙氣;②燃煤;③蒸汽;④燃油;⑤沼氣;⑥天然氣。一般來說間接加熱方式可以使用所有的能源,其利用的差別僅在溫度、壓力和效率。直接加熱方式,則因能源種類不同,受到一定限制。其中燃煤爐、焚燒爐的煙氣量大,又存在腐蝕性污染物,較難使用。
3)與干化設備爆炸有關的三個主要因素是氧氣、粉塵和顆粒的溫度。不同的工藝會有些差異,但總的來說必須控制的安全要素是:流化床式和立式圓盤式的氧氣含量小于5%,帶式、槳葉式和臥式轉盤式的氧氣含量小于 10%;粉塵濃度小于 60 g/m3;顆粒溫度小于 110 ℃。
4)濕污泥倉中甲烷濃度控制在 1%以下;干泥倉中干泥顆粒的溫度控制在 50 ℃以下。
5)為避免濕污泥敞開式輸送對環境造成影響,應采用污泥泵和管道將濕污泥密封輸送入干化機。干化機出料口須設置事故儲存倉或緊急排放口,供污泥干化機停運或非正常運行時,暫存或外排。
6)沙石混入污泥對干化設備的安全性存在著負面影響。對于含沙量較大的污泥,可通過增加耐磨裕量、降低轉動部件轉速等措施降低換熱面的磨損。特別是采用導熱油作為熱媒介質時,須十分注意。
2二次污染控制要求
污泥干化后蒸發出的水蒸汽和不可凝氣體(臭氣)需進行分離。水蒸汽通過冷凝裝置冷凝后處理。焚燒廠的廢水經過處理后應優先回用。當廢水需直接排入水體時,其水質應符合《污水綜合排放標準》GB 8978 的規定。
為防止污泥干化過程中臭氣外泄,干化裝置必須全封閉,污泥干化機內部和污泥干化間需保持微負壓。干化后污泥應密封儲存,以防止由于污泥溫度過高而導致臭氣揮發。干化廠惡臭污染物控制與防治應符合《惡臭污染物排放標準》GB 14554 的規定。
干化廠的噪聲應符合《城市區域環境噪聲標準》GB 3096 和《工業企業廠界噪聲標準》GB12348 的規定,對建筑物內直接噪聲源控制應符合《工業企業噪聲控制設計規范》GBJ 87 的規定。干化廠噪聲控制應優先采取噪聲源控制措施。廠區內各類地點的噪聲控制宜采取以隔音為主,輔以消聲、隔振、吸音的綜合治理措施。
5投資和運行成本的評價及分析
投資成本是由系統復雜程度、設備國產化率等因素決定的。一般情況下,若有可利用的余熱能源,熱干化采用國產設備時,單位投資成本在10~20 萬元/t 污泥(含水率 80%);若干化設備采用進口設備,單位投資成本在 30~40 萬元/t 污泥(含水率 80%)。
污泥熱干化的運行成本是由眾多因素所決定的,例如干化熱源的價格、zui終干化污泥的含水率、是否需單獨建設尾氣凈化系統等,難以轉化到具體金額。
一體化村鎮污水處理設備工業高速發展,環境急速污染,環境保護技術應時而生,今天小編就和你來解析一下微電解H2O2技術在高COD廢水中的關鍵應用。
基本原理:基于電化學、氧化——還原、物理以及絮凝沉淀的共同作用。該技術是在不通電的情況下,利用微電解設備中填充的微電解填料產生“原電池”效應對廢水進行處理。“原電池”以廢水做電解質,通過放電形成電流對廢水進行電解氧化和還原處理,同時配置H2O2藥劑與微電解反應中釋放的Fe2+很好地形成了Fenton原理,以達到降解有機污染物和提高生化性的目的。
技術優勢:適用范圍廣、處理效果很好、生化性提高大、成本低廉、處理時間短、操作維護方便、電力消耗低等優點。
適用范圍:可廣泛應用于印染、化工、制藥、焦化、石油、皮革、造紙、木材加工、電鍍廢水、印刷、采礦、有機磷農業、有機氯農業等行業的難降解廢水的治理。
微電解-H2O2技術是目前處理高濃度有機廢水的一種理想工藝,該工藝用于高鹽、難降解、高色度廢水的處理不但能大幅度地降低COD和色度,還可大大提高廢水的可生化性。
微電解-H2O2在處理難降解鄰苯二甲酸二辛脂類物質,*,有效提高廢水的可生化性,以降低后續生化系統的處理負荷。印染廢水深度處理回用集成工藝
1 傳統技術組合工藝
由于印染廢水水質復雜,廢水回用只靠單一技術難以實現,因此需要將各種方法有機結合起來,采用組合工藝進行綜合處理。Xiaojun Wang 等采用臭氧聯合生物法處理印染廢水,臭氧氧化后廢水B/C 由0.18 提高到0.36,COD 和色度的去除率也都有一定的提高。黃瑞敏等采用混凝脫色—曝氣生物濾池—離子交換組合工藝處理針織棉布染色廢水,出水色度去除至10 倍以下,COD<20 mg/L,SS 低于2 mg/L,濁度低于3 NTU。郭召海等研究了O3 氧化和生物濾池組合工藝處理印染廢水的效果,發現 O3-生物濾池組合技術很好地發揮了化學氧化、吸附和生物降解的協同作用,且具有運行成本低、不產生濃縮液和剩余污泥少等優點。單一技術用于深度處理,難以同時解決脫色、降COD 和除鹽等問題,將各種單一技術進行有機結合,能得到較好的處理效果,還能保證充分發揮各技術的優勢,提高污染物去除率。
2 膜技術與傳統技術的集成工藝
印染廢水成分復雜,如選用膜技術處理印染廢水,必須選擇合適的前處理工藝來阻止廢水中的膠體、有機質、懸浮物等對膜造成污染。A. Bes-Piá 等 采用O3 與NF 結合的工藝對經生化處理后的印染廢水進行處理回用,以O3 來氧化引起膜污染的有機物質,出水的各項指標可以達到回用標準。M. Marcucci 等針對生產車間的直排廢水進行物化預處理后,利用絮凝沉淀、O3 氧化和UF 進行后續深度處理,整個工藝過程色度去除率為93%,COD 去除率為66%。膜的污染問題限制了膜技術在印染廢水處理中的應用,采用O3 氧化等預處理手段來控制膜污染,從而增加膜的使用壽命,降低處理成本,是未來印染廢水深度處理的一大趨勢。
?
集成膜處理回用工藝
國外很多研究證明,將不同的膜分離技術結合,構成集成膜工藝,是印染廢水深度處理的一個重要方向。M. Marcucci 等對經砂濾、UF 處理后的印染廢水,再用NF 或RO 進行深度處理。實驗證明:NF 或RO 作為深度處理方案是可行的,RO 出水可回用于任何印染工序,NF 在脫鹽和去除礦物質方面不如 RO,但運行成本低于RO。
浙江至美環境開發了“臭氧催化氧化+CMF+ RO”深度處理工藝,并建成1 500 m3/d 的印染廢水膜法處理回用示范工程。O3 催化氧化系統主要用于去除水中難生化降解有機污染物的COD 和色度,去除率分別可達30%~40%和90%以上。臭氧催化氧化出水進入連續超微濾(CMF)系統,出水水質穩定,COD 穩定在40 mg/L 左右,濁度<0.4 NTU,污染指數(SDI)<3。再經反滲透處理后,出水COD<10 mg/L,電導率<10.5 μS/cm,SS 和色度均為0,滿足推薦的高級回用水水質標準。整個工藝通過分質處理、分級分質回用,廢水回用率達到總處理水量的75%以上。
這些研究都表明了未來廢水深度處理技術的發展方向,即充分利用多種工藝技術集成,提高廢水處理程度,達到廢水循環回用是zui終目標。